16 research outputs found

    The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans.

    Get PDF
    Cryptococcus neoformans (C. neoformans) is estimated to cause about 220,000 new cases every year in patients with AIDS, despite advances in antifungal treatments. C. neoformans possesses a remarkable ability to disseminate through an immunocompromised host, making treatment difficult. Here, we examine the mechanism of survival of C. neoformans under varying host conditions and find a role for ceramide synthase in C. neoformans virulence. This study also provides a detailed lipidomics resource for the fungal lipid research community in addition to discovering a potential target for antifungal therapy. Cell Rep 2018 Feb 6; 22(6):1392-140

    Stride-level analysis of mouse open field behavior using deep-learning-based pose estimation.

    Get PDF
    Gait and posture are often perturbed in many neurological, neuromuscular, and neuropsychiatric conditions. Rodents provide a tractable model for elucidating disease mechanisms and interventions. Here, we develop a neural-network-based assay that adopts the commonly used open field apparatus for mouse gait and posture analysis. We quantitate both with high precision across 62 strains of mice. We characterize four mutants with known gait deficits and demonstrate that multiple autism spectrum disorder (ASD) models show gait and posture deficits, implying this is a general feature of ASD. Mouse gait and posture measures are highly heritable and fall into three distinct classes. We conduct a genome-wide association study to define the genetic architecture of stride-level mouse movement in the open field. We provide a method for gait and posture extraction from the open field and one of the largest laboratory mouse gait and posture data resources for the research community

    A high-resolution belemnite geochemical analysis of Early Cretaceous (Valanginian-Hauterivian) environmental and climatic perturbations

    Get PDF
    International audienceThe Early Cretaceous Weissert event, characterized by a positive carbon isotope excursion and coincident with the Paraná-Etendeka volcanism, saw a biogeochemical chain of events that ultimately led to an increase in carbon burial. A conclusive link between the Paraná-Etendeka volcanism and its impact upon the environment remains, however, elusive. Here we reconstruct temperature through the Weissert event from Mg/Ca ratios of belemnites from the Vocontian Trough (France) and SE Spain and use carbon isotopes to link our temperature reconstruction to marine records of carbon cycling. We provide evidence that the Paraná-Etendeka volcanism, unlike some large igneous provinces, did not cause a climate warming. The case can be made for cooling in the last stages of the Weissert event, which possibly reflects substantial CO 2 drawdown. In the absence of warming and consequent accelerated hydrological cycling and the relatively long duration of the eruptive phase of the Paraná-Etendeka, an alternate trigger for increased fertilization of the oceans is implicated

    Measurement of average decoding rates of the 61 sense codons in vivo

    No full text
    Abstract Most amino acids can be encoded by several synonymous codons, which are used at unequal frequencies. The significance of unequal codon usage remains unclear. One hypothesis is that frequent codons are translated relatively rapidly. However, there is little direct, in vivo, evidence regarding codon-specific translation rates. In this study, we generate high-coverage data using ribosome profiling in yeast, analyze using a novel algorithm, and deduce events at the A-and P-sites of the ribosome. Different codons are decoded at different rates in the A-site. In general, frequent codons are decoded more quickly than rare codons, and AT-rich codons are decoded more quickly than GC-rich codons. At the P-site, proline is slow in forming peptide bonds. We also apply our algorithm to short footprints from a different conformation of the ribosome and find strong amino acid-specific (not codon-specific) effects that may reflect interactions with the exit tunnel of the ribosome

    Prokaryotic coding regions have little if any specific depletion of Shine-Dalgarno motifs.

    No full text
    The Shine-Dalgarno motif occurs in front of prokaryotic start codons, and is complementary to the 3' end of the 16S ribosomal RNA. Hybridization between the Shine-Dalgarno sequence and the anti-Shine-Dalgarno region of the16S rRNA (CCUCCU) directs the ribosome to the start AUG of the mRNA for translation. Shine-Dalgarno-like motifs (AGGAGG in E. coli) are depleted from open reading frames of most prokaryotes. This may be because hybridization of the 16S rRNA at Shine-Dalgarnos inside genes would slow translation or induce internal initiation. However, we analyzed 128 species from diverse phyla where the 16S rRNA gene(s) lack the anti-Shine-Dalgarno sequence, and so the 16S rRNA is incapable of interacting with Shine-Dalgarno-like sequences. Despite this lack of an anti-Shine-Dalgarno, half of these species still displayed depletion of Shine-Dalgarno-like sequences when analyzed by previous methods. Depletion of the same G-rich sequences was seen by these methods even in eukaryotes, which do not use the Shine-Dalgarno mechanism. We suggest previous methods are partly detecting a non-specific depletion of G-rich sequences. Alternative informatics approaches show that most prokaryotes have only slight, if any, specific depletion of Shine-Dalgarno-like sequences from open reading frames. Together with recent evidence that ribosomes do not pause at ORF-internal Shine-Dalgarno motifs, these results suggest the presence of ORF-internal Shine-Dalgarno-like motifs may be inconsequential, perhaps because internal regions of prokaryotic mRNAs may be structurally "shielded" from translation initiation

    The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans

    No full text
    Summary: Cryptococcus neoformans (C. neoformans) is estimated to cause about 220,000 new cases every year in patients with AIDS, despite advances in antifungal treatments. C. neoformans possesses a remarkable ability to disseminate through an immunocompromised host, making treatment difficult. Here, we examine the mechanism of survival of C. neoformans under varying host conditions and find a role for ceramide synthase in C. neoformans virulence. This study also provides a detailed lipidomics resource for the fungal lipid research community in addition to discovering a potential target for antifungal therapy
    corecore